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Abstract—Existing quantization aware training methods and
post-training quantization methods attempt to compensate the
quantization loss by leveraging on training data. Hence, these
methods are not effective for privacy constraint applications as
they are tightly coupled with training data. In contrast, this
paper proposes a data-independent post-training quantization
scheme that eliminates the need for training data. This is achieved
by generating a faux dataset, hereafter referred to as ‘Retro-
Synthesis Data’, from the FP32 model layer statistics and further
using it for quantization. This approach outperformed state-
of-the-art methods including, but not limited to, ZeroQ and
DFQ on models with and without Batch-Normalization layers
for 8, 6, and 4 bit precisions on ImageNet and CIFAR-10
datasets. We also introduced two futuristic variants of post-
training quantization methods namely ‘Hybrid Quantization’ and
‘Non-Uniform Quantization’. The Hybrid Quantization scheme
determines the sensitivity of each layer for per-tensor & per-
channel quantization, and thereby generates hybrid quantized
models that are ‘10 to 20%’ more efficient in inference time
while achieving the same or better accuracy as compared to per-
channel quantization scheme. Also, this method outperformed
FP32 accuracy when applied for ResNet-18, and ResNet-50
models on the ImageNet dataset. In the proposed Non-Uniform
Quantization scheme, the weights are grouped into different
clusters and these clusters are assigned with a varied number
of quantization steps depending on the number of weights and
their ranges in the respective cluster. This method resulted in
‘1%’ accuracy improvement against state-of-the-art methods on
the ImageNet dataset.

Index Terms—data free quantization, quantization, DNN in-
ference, synthetic data, model compression

I. INTRODUCTION

Quantization is a widely used and necessary approach
to convert heavier Deep Neural Network (DNN) models in
Floating Point (FP32) format to a light-weight lower precision
format, compatible for edge device inference. The introduc-
tion of lower precision computing hardware like Qualcomm
Hexagon DSP [5] resulted in various quantization methods [8],
[11], [13], [14], [17], [19], [22] compatible for edge devices.
Quantizing a FP32 DNN to INT8 or lower precision results
in model size reduction by at least 4X based on the precision
opted for. Also, since the computations happen in lower
precision, it implicitly results in faster inference and lesser

power consumption. The above benefits with quantization
come with a caveat of accuracy loss, due to noise introduced
in the quantized model’s weights and activations.

In order to reduce this accuracy loss, quantization aware
fine-tuning methods are introduced [2], [4], [6], [10], [20],
[23], wherein the FP32 model is trained along with quantizers
and quantized weights. The major disadvantages of these
methods are that they are computationally intensive and time-
consuming since they involve the whole training process. To
address this, various post-training quantization methods [1],
[13], [14], [19] are developed that resulted in trivial to heavy
accuracy loss when evaluated on different DNNs. Also, most
of these quantization methods require access to training data,
which may not always be available in case of security and
privacy constraint applications that involve customer’s card
details, health records and personal images. Contemporary
research on post-training quantization [3], [15] resulted in data
independent schemes by eliminating the need for training data,
wherein the quantization parameters are estimated from the
Batch-Normalization (BN) layer statistics of the FP32 model.
However they failed to achieve desired accuracy when BN
layers are not present in the model.

To address the above mentioned shortcomings, this paper
proposes a data-independent post-training quantization method
that estimates the quantization ranges by leveraging on ‘retro-
synthesis’ data generated from the original FP32 model. This
method resulted in better accuracy as compared to both data-
independent and data-dependent state-of-the-art quantization
methods on models such as ResNet18, ResNet50 [9], Mo-
bileNetV2 [18], AlexNet [12] and ISONet [16] on ImageNet
dataset [7]. It also outperformed state-of-the-art methods when
validated for lower bit precision such as 6 and 4 bit on
ImageNet and CIFAR-10 datasets. It should be noted that, the
‘retro-synthesis’ data generation task consumes 10 to 12 sec
to construct the entire dataset which is a minimal overhead as
compared to the benefit of data independence it provides. Ad-
ditionally, this paper introduces two variants of post-training
quantization methods namely ‘Hybrid Quantization’ and ‘Non-
Uniform Quantization’ that are discussed in further sections of
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the paper.

II. PRIOR ART

A. Quantization aware training based methods

An efficient integer-only arithmetic inference method for
commonly available integer only hardware is proposed in [10],
wherein a training procedure is employed which preserves the
accuracy of the model even after quantization. The work in
[20] trained a quantized bit compatible DNN and associated
quantizers for both weights and activations instead of relying
on handcrafted quantization schemes, for better accuracy. A
‘Trained Ternary Quantization’ approach is proposed in [23]
wherein the model is trained to be capable of reducing the
weights to 2-bit precision which achieved model size reduction
by 16x without much accuracy loss. Inspired by other methods,
[2] proposes a ‘Compression Aware Training’ scheme that
trains a model to learn compression of feature maps in a
better possible way during inference. Similarly, in binary
connect method [6] the network is trained with binary weights
during forward and backward passes that act as a regularizer.
Since these methods majorly adopt training the networks
with quantized weights and quantizers, the downside of these
methods is not only that they are time-consuming but also that
they demand training data which is not always accessible.

B. Post training quantization based methods

Several post-training quantization methods are proposed
to replace time-consuming quantization aware training based
methods. The method in [4] avoids full network training
by formalizing the linear quantization as ‘Minimum Mean
Squared Error’ and achieves better accuracy without re-
training the model. The ‘ACIQ’ method [1] achieved accuracy
close to FP32 models by estimating an analytical clipping
range of activations in the DNN. However, to compensate for
the accuracy loss, this method relies on a run-time per-channel
quantization scheme for activations, which is inefficient and
not hardware friendly. In similar lines, the OCS method [21]
proposes to eliminate the outliers for better accuracy with
minimal overhead. Though these methods considerably reduce
the time taken for quantization, they are unfortunately tightly
coupled with training data for quantization. Hence they are
not suitable for applications wherein access to training data
is restricted. The contemporary research on data free post-
training quantization methods was successful in eliminating
the need for training data. In these lines, by adopting a per-
tensor quantization approach, the DFQ method [15] achieved
accuracy similar to the per-channel quantization approach
through cross layer equalization and bias correction. It success-
fully eliminated the huge weight range variations across the
channels in a layer by scaling the weights for cross channels.
In contrast, ZeroQ [3] proposed a quantization method that
eliminated the need for training data, by generating distilled
data with the help of the Batch-Normalization layer statistics
of the FP32 model. By using the generated distilled data
for determining the activation ranges of the quantized model,
this method achieved state-of-the-art accuracy. However, these

methods tend to observe accuracy degradation when there are
no Batch-Normalization layers present in the FP32 model.

To address the above mentioned shortcomings, the main
contributions in this paper are as follows:
• Proposed a data-independent post-training quantization

method that uses the ‘Retro Synthesis’ data generated
from the FP32 model inorder to estimate the activation
ranges for quantization. Unlike other data-independent
quantization methods this method does not mandate
the presence of Batch-Normalization layers in the FP32
model.

• Introduced a ‘Hybrid Quantization’ method, a combi-
nation of Per-Tensor and Per-Channel schemes, that
achieves state-of-the-art accuracy with lesser inference
time as compared to fully per-channel quantization
schemes.

• Recommended a ‘Non-Uniform Quantization’ method,
wherein the weights in each layer are clustered and then
allocated with a varied number of bins to each cluster,
that achieves ‘1%’ better accuracy against state-of-the-
art methods on ImageNet dataset.

III. METHODOLOGY

This section discusses in detail the proposed data-
independent post-training quantization methods namely (a)
Quantization using retro-synthesis data, (b) Hybrid Quantiza-
tion, and (c) Non-Uniform Quantization.

A. Quantization using retro synthesis data

In general, any post-training quantization scheme mainly
performs two tasks - (i) quantizing the weights that are
static in a given FP32 model and (ii) determining the ac-
tivation ranges for layers like ReLU, Tanh, Sigmoid that
vary dynamically with different input data. The post training
quantization method in this paper uses asymmetric uniform
quantization for weights and the proposed ‘retro-synthesis’
data is used to determine the activation ranges. It should
be noted that we have purposefully chosen to use simple
asymmetric uniform quantization to quantize the weights and
also have not employed any advanced techniques such as
outlier elimination or weight clipping for the reduction of
quantization loss. This is in the interest of demonstrating the
effectiveness of ‘retro-synthesis’ data in accurately determin-
ing the quantization ranges of activation outputs. However, in
the other two proposed methods (b) and (c) we propose two
newly developed weight quantization methods respectively for
efficient inference with improved accuracy.

1) Retro-synthesis Data Generation: Aiming to achieve for
a data-independent quantization method is challenging, as it is
difficult to estimate activation ranges without having access to
the training data. An alternative is to use “random data” having
Gaussian distribution with ‘zero mean’ and ‘unit variance’
which results in inaccurate estimation of activation ranges
thereby resulting in poor accuracy. The accuracy degrades
rapidly when quantized for lower bit precisions such as 6,
4, and 2 bit. Recently, ZeroQ [3] proposed a quantization
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method that generates distilled data from the FP32 model
and uses the same for estimating activation ranges, which
results in better accuracy. However ZeroQ [3] work does not
showcase generation of distilled data and respective accuracy
improvement for the models without Batch-Normalization
layers.

In contrast, inspired by ZeroQ [3] we put forward a modified
version of the data generation approach by relying on the fact
that DNNs which are trained to discriminate between different
image classes embed relevant information about the images.
Hence, by considering the class loss for a particular image
class and traversing through the FP32 model backward, it
is possible to generate image data with similar statistics of
the respective class. Therefore, the proposed “retro-synthesis”
data generation is based on the property of the trained DNN
model, where the image data that maximizes the class score
is generated by incorporating the notion of the class features
captured by the model. Like this, we generate a set of images
corresponding to each class, using which the model is trained.
Since the data is generated from the original model itself we
name the data as “retro-synthesis” data. It should be observed
that this method has no dependence on the presence of Batch-
Normalization layers in the FP32 model, thus overcoming the
downside of ZeroQ. It is also evaluated that, for the models
with Batch-Normalization layers, incorporating the proposed
“class-loss” functionality to the distilled data generation algo-
rithm as in ZeroQ results in improved accuracy. The efficacy of
the quantized model when quantized with the proposed “retro-
synthesis” data as compared to random data and original
dataset is depicted in Fig. 5.

The proposed “retro-synthesis” data generation method is
detailed in Algorithm 1. Given, a fully trained FP32 model and
a class of interest, our aim is to empirically generate an image
that is representative of the class in terms of the model class
score. More formally, let P (C) be the softmax of the class
C, computed by the final layer of the model for an image I .
Thus, the aim is to generate an image such that, this image
when passed to the model will give the highest softmax value
for class C.

The “retro-synthesis” data generation for a target class
C starts with random data of Gaussian distribution I and
performing a forward pass on I to obtain intermediate ac-
tivations and output labels. Then, we calculate the aggregated
loss that occurs between, stored batch norm statistics and
the intermediate activation statistics (LBN ), the Gaussian loss
(LG), and the class loss (LC) between the output of the
forward pass and our target output. The L2 loss formulation
as in (1) is used for LBN and LG calculation whereas mean
squared error is used to compute LC . The calculated loss is
then backpropagated till convergence, thus generating a batch
of retro-synthesis data for a class C. The same algorithm is
extendable to generate the retro-synthesis data for all other
classes as well.

Algorithm 1 Retro synthesis data generation
Input: Pre-determined FP32 model (M), Target class (C).
Output: A set of retro-synthesis data corresponding to Target
class (C).

1) Init: I ← random gaussian(batch-size, input shape)
2) Init: Target ←rand(No. of classes) 3

argmax(Target) = C
3) Init: µ0 = 0, σ0 = 1
4) Get (µi, σi) from batch norm layers of M (if present),

i ∈ 0, 1, . . . , n where n→ No.of batch norm layers
5) for j = 0, 1, . . . ,No. of Epochs

a) Forward propagate I and gather intermediate acti-
vation statistics

b) Output = M(I)
c) LossBN=0
d) for k = 0, 1, . . . , n

i) Get (µk, σk)
ii) LossBN ← LossBN+L((µk, σk), (µBN

k , σBN
k ))

e) Calculate (µ′0, σ
′
0) of I

f) LossG ← L((µ0, σ0), (µ′0, σ
′
0))

g) LossC ← L(Target, Output)
h) Total loss = LossBN + LossG + LossC
i) Update I ← backward(Total loss)

L((µk, σk), (µBN
k , σBN

k )) = ‖µk − µBN
k ‖2

2
+

‖σk − σBN
k ‖2

2
(1)

where L is the computed loss, µk, σk, and µBN
k , σBN

k are the
mean and standard deviation of the kth activation layer and
the Batch-Normalization respectively .

By observing the sample visual comparison representation
of the retro-synthesis data against the random data as depicted
in Fig. 1, it is obvious that the retro-synthesis data captures
relevant features from the respective image classes in a DNN
understandable format. Hence, using the retro-synthesis data
for the estimation of activation ranges achieves better accuracy
as compared to using random data. Also, it outperforms the
state-of-the-art data-free quantization methods [3], [15] with
a good accuracy margin when validated on models with
and without Batch-Normalization layers. Therefore, the same
data generation technique is used in the other two proposed
quantization methods (B) and (C) as well.

B. Hybrid Quantization

In any quantization method, to map the range of floating-
point values to integer values, parameters such as scale and
zero point are needed. These parameters can be calculated
either for per-layer of the model or per-channel in each layer
of the model. The former is referred to as ‘per-tensor/per-
layer quantization’ while the latter is referred to as ‘per-
channel quantization’. Per-channel quantization is preferred
over per-tensor in many cases because it is capable of han-
dling the scenarios where weight distribution varies widely
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Random gaussain data Retro-synthesis data

Fig. 1. A sample representation of the random Gaussian data and the Retro-
synthesis data using the proposed in Algorithm 1 respectively for a sample
class of ResNet-50 model.

among different channels in a particular layer. However, the
major drawback of this method is, it is not supported by
all hardware [15] and also it needs to store scale and zero
point parameters for every channel thus creating an additional
computational and memory overhead. On the other hand, per-
tensor quantization which is more hardware friendly, suffers
from significant accuracy loss, mainly at layers where the
weight distribution varies significantly across the channels
of the layer and the same error is further propagated down
to consecutive layers of the model resulting in accuracy
degradation. In the majority of the cases, the number of such
layers present in a model is very few, for example in the case of
MobileNet-V2 only very few depthwise separable layers show
significant weight variations across channels which result in
huge accuracy loss [15]. To compensate such accuracy, loss
per-channel quantization methods are preferred even though
they are not hardware friendly and computationally expensive.
Hence, in the proposed “Hybrid Quantization” technique, we
determine the sensitivity of each layer corresponding to both
per-channel and per-tensor quantization schemes and observe
the loss behaviour at different layers of the model. Thereby,
we identify the layers which are largely sensitive to per-tensor
(which has significant loss of accuracy) and then quantize only
these layers using the per-channel scheme while quantizing
the remaining less sensitive layers with the per-tensor scheme.
For the layer sensitivity estimation, KL-divergence (KLD) is
calculated between the outputs of the original FP32 model
and the FP32 model in which the i-th layer is quantized
using per-tensor and per-channel schemes. The computed layer
sensitivity is then compared against a threshold value (Th) in
order to determine whether a layer is suitable to be quantized
using the per-tensor or per-channel scheme. This process is
repeated for all the layers in the model.

The proposed Hybrid Quantization scheme can be utilized
for a couple of benefits - one is for accuracy improvement and
the other is for inference time optimization. For accuracy im-
provement, the threshold value has to be set to zero, Th = 0.
By doing this, a hybrid quantization model with a unique
combination of per-channel and per-tensor quantized layers
is achieved such that the accuracy is improved in comparison
to a fully per-channel quantized model and in some cases also
FP32 model. For inference time optimization the threshold
value Th is determined heuristically by observing the loss
behavior of each layer that aims to generate a model with

the hybrid approach, having most of the layers quantized with
the per-tensor scheme and the remaining few sensitive layers
quantized with the per-channel scheme. In other words, we
try to create a hybrid quantized model as close as possible to
the fully per-tensor quantized model so that the inference is
faster with the constraint of accuracy being similar to the per-
channel approach. This resulted in models where per-channel
quantization is chosen for the layers which are very sensitive
to per-tensor quantization. For instance, in case of ResNet-
18 model, fully per-tensor quantization accuracy is 69.7%
and fully per-channel accuracy is 71.48%. By performing
the sensitivity analysis of each layer, we observe that only
the second convolution layer is sensitive to per-tensor quan-
tization because of the huge variation in weight distribution
across channels of that layer. Hence, by applying per-channel
quantization only to this layer and per-tensor quantization
to all the other layers we achieved 10 − 20% reduction in
inference time. The proposed method is explained in detail
in Algorithm 2. For every layer in the model, we find an
auxiliary model Aux-model=quantize(M, i, qs) where, the
step quantize(M, i, qs) quantizes the i-th layer of the model
M using qs quant scheme, where qs could be per-channel or
per-tensor while keeping all other layers same as the original
FP32 weight values. To find the sensitivity of a layer, we
find the KLD between the Aux-model and the original
FP32 model outputs. If the sensitivity difference between per-
channel and per-tensor is greater than the threshold value Th,
we apply per-channel quantization to that layer else we apply
per-tensor quantization. The empirical results with this method
are detailed in section IV-B.

Algorithm 2 Hybrid Quantization scheme
Input: Fully trained FP32 model (M) with n layers, retro-
synthesis data (X) generated in Part A.
Output: Hybrid Quantized Model.

1) Init: quant scheme← {PC, PT}
2) Init: Mq ←M
3) for i = 0, 1, . . . , n

a) error[PC]← 0 , error[PT ]← 0
b) for (qs in quant scheme)

i) Aux-model← quantize(M ,i,qs).
ii) Output← M(X).

iii) Aux-output← Aux-model(X)
iv) e← KLD(Output, Aux-output)
v) error[qs]← e

c) if error[PT ]− error[PC] < Th
Mq ← quantize(Mq , i, PT )
else
Mq ← quantize(Mq , i, PC)

C. Non-Uniform Quantization

In the uniform quantization method, the first step is to
segregate the entire weights range of the given FP32 model
into 2K groups of equal width, where ‘K’ is bit precision
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chosen for the quantization, like K = 8, 6, 4, etc. Since we
have a total of 2K bins or steps available for quantization,
the weights in each group are assigned to a step or bin.
The obvious downside with this approach is, even though
the number of weights present in each group is different, an
equal number of steps are assigned to each group. From the
example weight distribution plot shown in Fig. 2 it is evident
that the number of weights and their range in ‘group-m’ is
very dense and spread across the entire range, whereas they
are very sparse and also concentrated within a very specific
range value in ‘group-n’. In the uniform quantization approach
since an equal number of steps are assigned to each group,
unfortunately, all the widely distributed weights in ‘group-m’
are quantized to a single value, whereas the sparse weights
present in ‘group-n’ are also quantized to a single value.
Hence it is not possible to accurately dequantize the weights in
‘group-m’, which leads to accuracy loss. Although a uniform
quantization scheme seems to be a simpler approach it is not
optimal. A possible scenario is described in Fig. 2 and there
may exist many such scenarios in real-time models. Also,
in cases where the weight distribution has outliers, uniform
quantization tends to perform badly as it ends up in assigning
too many steps even for groups with very few outlier weights.
In such cases, it is reasonable to assign more steps to the
groups with more number of weights and fewer steps to the
groups with less number of weights. With this analogy, in the
proposed Non-Uniform Quantization method, first the entire
weights range is divided into three clusters using Interquartile
Range (IQR) Outlier Detection Technique, and then assign
a variable number of steps for each cluster of weights. Later,
the quantization process for the weights present in each cluster
is performed similar to the uniform quantization method, by
considering the steps allocated for that respective cluster as
the total number of steps.

Fig. 2. An example weight distribution plot of a random layer in a model
with a weight range of [0 − 3] divided into 6 groups of equal width. The
ranges from 0.5 to 1 and 2.5 to 3 are labeled as ‘group-m’ and ‘group-n’
respectively. For clarity only the weights in these two groups are shown.

With extensive experiments, it is observed that assigning the
number of steps to a group by considering just the number of
weights present in the group, while ignoring the range, results
in accuracy degradation, since there may be more number of
weights in a smaller range and vice versa. Therefore it is

preferable to consider both the number of weights and the
range of the group for assigning the number of steps for a
particular group. The effectiveness of this proposed method is
graphically demonstrated for a sample layer of the ResNet-
18 model in Fig. 3 in the appendix A. By observing the three
weight plots it is evident that the quantized weight distribution
using the proposed Non-Uniform Quantization method is more
identical to FP32 distribution, unlike the uniform quantization
method and hence it achieves a better quantized model. Also,
it should be noted that the proposed Non-Uniform quantization
method is a fully per-tensor based method.

IV. EXPERIMENTAL RESULTS

A. Results for quantization method using retro-synthesis data

Table I shows the benefits of quantization using the ‘retro-
synthesis’ data (described in section III-A) against state-of-the-
art methods. In the case of models with Batch-Normalization
layers, the proposed method achieves 1.5% better accuracy
against DFQ and a marginal improvement against ZeroQ.
Also, our method outperforms FP32 accuracy in the case
of ResNet-18 and ResNet-50. In the case of models without
Batch-Normalization layers such as Alexnet and ISONet [16]
the proposed method outperforms the ZeroQ method by 2−3%
on the ImageNet dataset.

TABLE I
QUANTIZATION RESULTS USING RETRO-SYNTHESIS DATA FOR MODELS
WITH AND WITHOUT BATCH-NORMALIZATION LAYERS ON IMAGENET

DATASET WITH WEIGHTS AND ACTIVATIONS QUANTIZED TO 8-BIT
(W8A8). BN FIELD INDICATES WHETHER THE RESPECTIVE MODEL HAS

BATCH-NORMALIZATION LAYERS PRESENT IN IT OR NOT.

Model BN DFQ ZeroQ Proposed method FP32
resnet18 X 69.7 71.42 71.48 71.47
resnet50 X 77.67 77.67 77.74 77.72

mobilenetV2 X 71.2 72.91 72.94 73.03
Alexnet 7 - 55.91 56.39 56.55

ISONet-18 7 - 65.93 67.67 67.94
ISONet-34 7 - 67.60 69.91 70.45
ISONet-50 7 - 67.91 70.15 70.73
ISONet-101 7 - 67.52 69.87 70.38

Table II demonstrates the effectiveness of the proposed
retro-synthesis data for low-precision (weights quantized to
6-bit and the activations quantized to 8-bit (W6A8)). From
the results, it is evident that the proposed method outperforms
the ZeroQ method.

TABLE II
RESULTS FOR QUANTIZATION METHOD USING RETRO-SYNTHESIS DATA
WITH WEIGHTS QUANTIZED TO 6-BIT AND ACTIVATIONS QUANTIZED TO

8-BIT (W6A8) ON IMAGENET DATASET

Model ZeroQ proposed method FP32
ResNet-18 70.76 70.91 71.47
Resnet-50 77.22 77.30 77.72

MobileNet-V2 70.30 70.34 73.03

The efficiency of the proposed quantization method for
lower bit precision on the CIFAR-10 dataset for ResNet-20
and ResNet-56 models is depicted in Table III below. From
the results, it is evident that the proposed method outperforms
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the state-of-the-art methods even for lower precision 8, 6, and
4 bit weights with 8 bit activations.

B. Results for Hybrid Quantization method

Table IV demonstrates the benefits of the proposed Hybrid
Quantization method in two folds - one is for accuracy
improvement and the other is for the reduction in inference
time. From the results, it is observed that the accuracy is
improved for all the models as compared to the per-channel
scheme. It should also be observed that the proposed method
outperforms FP32 accuracy for ResNet-18 and ResNet-50.
Also, by applying the per-channel (PC) quantization scheme
to very few sensitive layers as shown in “No. of PC layers”
column of Table IV, and applying the per-tensor (PT) scheme
to remaining layers, the proposed method optimizes inference
time by 10−20% while maintaining a very minimal accuracy
degradation against the fully per-channel scheme.

C. Results for Non-uniform Quantization

Since the proposed Non-Uniform Quantization method is a
fully per-tensor based method, to quantitatively demonstrate its
effect, we choose to compare the models quantized using this
method against the fully per-tensor based uniform quantization
method. The results with this approach depicted in Table V,
accuracy improvement of 1% is evident for the ResNet-18
model.

V. CONCLUSION AND FUTURE SCOPE

This paper proposes a data independent post training quan-
tization scheme using “retro sysnthesis” data, that does not
depend on the Batch-Normalization layer statistics and outper-
forms the state-of-the-art methods in accuracy. Two futuristic
post training quantization methods are also discussed - “Hy-
brid Quantization” and “Non-Uniform Quantization” which
resulted in better accuracy and inference time as compared to
the state-of-the-art methods. These two methods unleashes a
lot of scope for future research in similar lines. Also, in future
more experiments can be done on lower precision quantization
such as 6-bit, 4-bit and 2-bit precision using these proposed
approaches.

APPENDIX

A. Non-uniform Quantization method

1) Clustering mechanism: The IQR of a range of values is
defined as the difference between the third and first quartiles
Q3 and Q1 respectively. Each quartile is the median of the data
calculated as follows. Given, an even 2n or odd 2n+1 number
of values, the first quartile Q1 is the median of the n smallest
values and the third quartile Q3 is the median of the n largest
values. The second quartile Q2 is same as the ordinary median.
Outliers here are defined as the observations that fall below
the range Q1−1.5IQR or above the range Q3+1.5IQR. This
approach results in grouping the values into three clusters C1,
C2, and C3 with ranges R1 = [min,Q1 − 1.5IQR), R2 =
[Q1−1.5IQR,Q3+1.5IQR], and R3 = (Q3+1.5IQR,max]
respectively.

FP32 distribution Non-Uniform quantization distribution Uniform quantization distribution

Fig. 3. Weight distribution of FP32 model, model quantized using the pro-
posed Non-Uniform Quantization method and uniform quantization method
in respective order for a sample layer in ResNet-18 model. The horizontal
and vertical axis represents the weights range and frequency respectively.

With extensive experiments it is observed that, assigning the
number of steps to a group by considering just the number of
weights present in the group, while ignoring the range, results
in accuracy degradation, since there may be more number
of weights in a smaller range and vice versa. Therefore it
is preferable to consider both number of weights and the
range of the group for assigning the number of steps for a
particular group. With this goal we arrived at the number of
steps allocation methodology as explained below in detail.

2) Number of steps allocation method for each group:
Suppose Wi, and Ri represent the number of weights and the
range of i-th cluster respectively, then the number of steps
allocated Si for the i-th cluster is directly proportional to Ri

and Wi as shown in (2) below.

Si = C × (Ri ×Wi) (2)

Thus, the number of steps Si allocated for i-th cluster
can be calculated from (2) by deriving the proportionality
constant C based on the constraint Σ(Si) = 2k, where k is the
quantization bit precision chosen. So, using this bin allocation
method we assign the number of bins to each cluster. Once the
number of steps are allocated for each cluster, the quantization
is performed on each cluster to obtain the quantized weights.

B. Sensitivity analysis for per-tensor and per-channel quanti-
zation schemes

From the sensitivity plot in Fig. 4 it is very clear that only
few layers in MobileNetV2 model are very sensitive for per-
tensor scheme and other layers are equally sensitive to either
of the schemes. Hence we can achieve better accuracy by just
quantizing those few sensitive layers using per-channel scheme
and remaining layers using per-tensor scheme.

C. Sensitivity analysis of Ground truth data, random data and
the proposed retro-synthesis data

From the sensitivity plot in Fig. 5, it is evident that there is
a clear match between the layer sensitivity index plots of the
proposed retro-synthesis data (red-plot) and the ground truth
data (green plot) whereas huge deviation is observed in case
of random data (blue plot). Hence it can be concluded that the
proposed retro-synthesis data generation scheme can generate
data with similar characteristics as that of ground truth data
and is more effective as compared to random data.
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TABLE III
RESULTS FOR QUANTIZATION METHOD USING RETRO-SYNTHESIS DATA WITH WEIGHTS QUANTIZED TO 8, 6, AND 4-BIT AND ACTIVATIONS QUANTIZED

TO 8-BIT (W8A8, W6A8, AND W4A8) ON CIFAR-10 DATASET

W8A8 W6A8 W4A8

Model ZeroQ Proposed
method ZeroQ Proposed

method ZeroQ Proposed
method

ResNet-20 93.91 93.93 93.78 93.81 90.87 90.92
ResNet-56 95.27 95.44 95.20 95.34 93.09 93.13

TABLE IV
RESULTS ON IMAGENET DATASET WITH THE PROPOSED HYBRID QUANTIZATION SCHEME 2 (W8A8), WITH THRESHOLD Th SET TO 0 FOR ACCURACY

IMPROVEMENT AND SET TO 0.001 FOR INFERENCE TIME BENEFIT.

Model PC PT Hybrid
Th=0

Hybrid
Th=0.001 FP32 No. of PC layers

for Th=0.001

% time
benefit

for Th=0.001
Resnet-18 71.48 69.7 71.60 71.57 71.47 1 20.79
Resnet-50 77.74 77.1 77.77 77.46 77.72 2 17.60

MobilenetV2 72.94 71.2 72.95 72.77 73.03 4 8.44

TABLE V
RESULTS WITH NON-UNIFORM QUANTIZATION METHOD (W8A8) ON

IMAGENET DATASET

Model/Method Uniform
quantization

Non-Uniform
Quantization FP32

ResNet-18 69.70 70.60 71.47
ResNet-50 77.1 77.30 77.72

Sensitivity plot of per-tensor Vs per-channel quantization schemes for MobileNetV2 model 

Fig. 4. Sensitivity plot describing the respective layer’s sensitivity for per-
tensor and per-channel quantization schemes in case of MobileNet-V2 model.
The horizontal axis represent the layer number and the vertical axis represents
the sensitivity value.
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